Activation of APE/Ref-1 redox activity is mediated by reactive oxygen species and PKC phosphorylation.

نویسندگان

  • M M Hsieh
  • V Hegde
  • M R Kelley
  • W A Deutsch
چکیده

Reactive oxygen species (ROS) arise through normal cellular aerobic respiration, and, in combination with external sources such as ionizing radiation, cigarette tar and smoke, and particulate matter generated by combustion, can have a profound negative effect on cellular macromolecules such as DNA that may lead to a number of human pathological disorders including accelerated aging and cancer. A major end product of ROS damage to DNA is the formation of apurinic/apyrimidinic (AP) sites, which without removal are known to halt mRNA and DNA synthesis, or act as non-coding lesions resulting in the increased generation of DNA mutations. In human cells, the major enzyme in correcting the deleterious effects of AP sites in DNA is through the participation of AP endonuclease (APE), which initiates the removal of baseless sites in DNA through the catalytic scission of the phosphodiester bond 5' and adjacent to an AP site. Interestingly, APE also possesses an activity (Ref-1) that controls the redox status of a number of transcription factors including Fos and Jun. The means by which APE/Ref-1 is directed to carry out such disparate roles are unknown. The presence of a number of phosphorylation sites scattered throughout both functional domains of APE/Ref-1 however offered one possible mechanism that we reasoned could play a role in dictating how this protein responds to different stimuli. Here we show that the in vitro redox activity of APE/Ref-1 is stimulated by PKC phosphorylation. Furthermore, when human cells were exposed to the PKC activator phorbol 12-myristate 13-acetate, an increase in redox activity was observed that corresponded to an increase in the phosphorylation status of APE/Ref-1. Importantly, human cells exposed to the oxidizing agent hypochlorite, followed by methyl methanesulfanate, responded with an increase in redox activity by APE/Ref-1 that also involved an increase in PKC activity and a corresponding increase in the phosphorylation of APE/Ref-1. These results suggest that the ability of APE/Ref-1 to perform its in vivo redox function is correlated to its susceptibility to PKC phosphorylation that notably occurs in response to DNA damaging agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Transfer of Redox Factor-1 Inhibits Neointimal Formation Involvement of Platelet-Derived Growth Factor- Receptor Signaling via the Inhibition of Reactive Oxygen Species–Mediated Syk Pathway

The role of apurinic/apyrimidinic endonuclease-1/redox factor-1 (Ref-1) in vascular smooth muscle cells has yet to be clearly elucidated. Therefore, we attempted to determine the roles of Ref-1 in the migration induced by platelet-derived growth factor (PDGF)-BB and in its signaling in rat aortic smooth muscle cells (RASMCs). Cellular migration, superoxide (O ) production, Rac-1 activity, and n...

متن کامل

The DNA repair activity of human redox/repair protein APE/Ref-1 is inactivated by phosphorylation.

The human DNA repair protein apurinic/apyrimidinic endonuclease (APE) is a dual-function protein that has important roles in both the repair of baseless sites that arise in DNA and in regulating the redox state of a number of proteins (Ref-1). Although previous attention has been focused on how the human APE/Ref-1 gene may be regulated at the DNA level, we have instead examined if APE/Ref-1 is ...

متن کامل

Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy

Objective(s):  The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...

متن کامل

Copper-zinc superoxide dismutase prevents the early decrease of apurinic/apyrimidinic endonuclease and subsequent DNA fragmentation after transient focal cerebral ischemia in mice.

BACKGROUND AND PURPOSE DNA damage and its repair mechanism are thought to be involved in ischemia/reperfusion injury in the brain. We have previously shown that apurinic/apyrimidinic endonuclease (APE/Ref-1), a multifunctional protein in the DNA base excision repair pathway, rapidly decreased after transient focal cerebral ischemia (FCI) before the peak of DNA fragmentation. To further investig...

متن کامل

Redox effector factor-1, combined with reactive oxygen species, plays an important role in the transformation of JB6 cells.

Apurinic/apyrimidinic endonuclease/redox effector factor-1 (APE/Ref-1) is a multifunctional protein involved both in DNA base excision repair and redox regulation. Studies have suggested that abnormal Ref-1 levels and/or activities are associated with tumor progression and sensitivities to treatment, but no direct evidence has yet been published regarding the role of Ref-1 in malignant transfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 29 14  شماره 

صفحات  -

تاریخ انتشار 2001